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Abstract 

 
Several versions of the Markowitz portfolio model are evaluated with respect to patterns in equity 
markets.  Much research has shown that strategies based on momentum have generated superior risk 
adjusted returns. We form a long-only portfolio of momentum strategies via industry-level assets; the 
strategy beats many others over numerous markets and time periods and provides a good benchmark for 
competing optimization models. Simple Markowitz models are quite effective, as long as the proper 
historical time period is chosen for the stochastic projections. Investment performance of optimal asset 
allocation models can be improved by considering the momentum effects in the parameter estimation 
procedures. 
 
 
I. Introduction 
 
Since the early work of Markowitz (1952, 1956), the single-period mean-variance model has been the 
norm in portfolio management. Over the years, numerous variants of the core model have been proposed 
and implemented to improve performance in practical settings. However, empirical tests suggest that 
investment performance has not been outstanding in many cases. In this paper, we illustrate examples to 
increase the investment performance of such models by actively exploiting a significant market anomaly 
– momentum effects. 
 
The most persistent equity anomaly involves the predictability of stock returns based on past performance, 
which is often referred to as the momentum effect. The typical investment strategy in academic articles 
that exploits the effect is to buy winners and sell losers based on the intermediate term performance (3 to 
12 months) proposed by Jegadeesh and Titman (1993). Many papers such as Cleary et al. (1998), 
Rouwenhorst (1998), Kang et al. (2002), and Demir et al. (2004) have documented that such a strategy is 
profitable, except a few stock markets (Liu and Lee (2001) and Hameed and Kusnadi (2002)). Further, 
money managers, dominant players in the stock market, are reported to not only employ the momentum 
effect, but also improve their performance by applying it. For instance, Grinblatt et al. (1995), Nofsinger 
and Sias (1999), Sias et al. (2001), Badrinath and Wahal (2002), Sapp and Tiwari (2004), and Sias (2004) 
document that a significant proportion of active funds adopt the momentum strategy as their equity 
selection rules. Carhart (1997) illustrates that the performance persistence of mutual funds can be 
explained by the one-year momentum effect.  Recently, Mulvey and Kim (2008) show that the active 
equity funds in the U.S. share similar performance patterns with the industry-level long-only momentum 
strategy, and the similarity is stronger for the funds with good performance. Thus, we apply the 
specialized momentum strategy as a basis, and benchmark for single-period optimization models in the 
equity domain. 
 
Unlike traditional approaches, we adopt industry-level data for the empirical analysis. Why do we employ 
industry-level data? First, compared to stock-level analysis, it reduces idiosyncratic risks. Since the mean-
variance models require the estimated market parameters, it may lead to unstable test results to adopt 
stock-level data without employing specialized parameter estimation techniques. In contrast, one can 
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readily eliminate such issues by analyzing the broad asset classes such as industries. Second, the strategy 
is becoming easy to implement due to the introduction of various exchange traded funds (ETFs). In 
addition, the industry-level momentum strategy has displayed outstanding performance (Mulvey and Kim 
(2007)). Importantly, one can obtain better diversification benefits from industry-wide market 
segmentation, as compared to the current size/style break-outs. We discuss details of the issue in the later 
section. 
  
The main objectives of this paper are as follows: 1) The Markowitz model requires estimating parameters 
for return distributions for the assets, and these are often hard to estimate. We employ momentum patterns 
to see if they help with a Markowitz model and several variants. 2) In addition, we compare the 
performance of several popular mean-variance models in various settings.  
 
The remainder of the paper is organized as follows. In section II, we briefly discuss four asset allocation 
models employed in this paper – traditional Markowitz, Black-Litterman, Grauber-Hakansson, and robust 
optimization models. In the following section, we illustrate how the industry-wide equity market 
segmentation can provide better diversification benefits. Empirical results and conclusions follow. 
 
 
II. Models: Markowitz Model and its Variants 
 
In spite of its popularity, several issues arise regarding the practical implementation of the Markowitz 
model. A major issue is its sensitivity to input changes. Since the optimal portfolio from the mean-
variance approach is chosen among the extreme points of the feasible region, small changes in the 
estimated parameters of the market distribution can lead radically different optimal points. As a 
consequence, relatively small errors in the parameter estimation can potentially cause a steep decrease of 
investment performance. Such a high sensitivity is undesirable for practical applications. 
  
Many models have been proposed to overcome this shortcoming. A popular approach is to utilize robust 
estimators for the mean and the variance. Instead of using the unbiased estimators for the market 
distribution, one can reduce the estimation error by shrinking the sample mean and the sample covariance 
toward structured estimators. Such shrinkage methods are well documented in Jobson and Korkie (1981), 
Jorion (1986), Pastor (2000), and Resnick and Larsen (2001). Also, in a similar context, Black and 
Litterman (1990) propose a model to blend the investor’s view with the market estimators. In their model, 
the investor’s view, which is represented as a linear relation among the expected returns of the individual 
assets, is mixed to the market equilibrium via a Bayesian approach. See Satchell and Scowcroft (2000), 
and Idzorek (2004) for the detailed discussion. 
 
An alternative approach is the portfolio re-sampling technique. In this approach, market parameters are 
re-sampled via Monte Carlo simulation, and the portfolio weights are obtained by averaging the optimal 
solutions of individual mean-variance problems with the generated estimators. The Michaud model 
(1998), for example, generates random samples from the estimated mean and variance, and obtains a new 
set of market parameter estimators from samples. The efficient frontier corresponding to this simulation is 
produced by minimizing a set of evenly spaced portfolio variances. After repeating the procedure 
sufficiently often, one can gain the re-sampled portfolio weight by averaging the optimal allocations with 
the same variance ranking. In a sense, this approach addresses the sensitivity issue by averaging the 
outputs from perturbed samples, while the robust estimator methods smoothes the estimators. 
 
There also has been significant effort to improve the robustness of the optimal portfolio allocation by 
analytically reflecting the uncertainty of estimated parameters with the help of convex analysis. These 
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models typically define the uncertainty set for the parameters and formulate the optimal allocation as a 
convex optimization problem to consider the worst case. Accordingly, this approach is referred to as a 
robust optimization model. For instance, when the mean return or the covariance is relaxed to lie in an 
ellipsoid, the mean-variance problem can be rewritten as a second order cone programming (SOCP) 
problem. If the covariance takes a finite number of matrices, it is formulated as a quadratic constrained 
quadratic programming (QCQP) problem. Note that both SOCP and QCQP are convex programs which 
can be solved efficiently. See Ben-Tal and Nemirovski (1995), El Ghaoui and Lebret (1997), Ben-Tal and 
Nemirovski (2001), and Boyd and Vandenberghe (2004) for the further discussion. 
 
We pick one model for each of the approaches as well as the traditional Markowitz model to evaluate 
their historical performance. Black-Litterman model, Grauer-Hakansson model (1985), and SOCP model 
for the mean relaxation are chosen for the robust parameter estimation, re-sampled portfolio, and robust 
optimization approaches, respectably. Meucci (2005) and Fabozzi et al. (2007) discuss these models as 
well as other approaches in detail. 
 
II.1. Robust Estimator: Black-Litterman 
 
We employ a simplified version of Black-Litterman model described in Meucci (2007). With the 
normality assumption, let the prior on the market be μ and Σ. That is, the n-dimensional random return 
vector  
 

,ߤሺܰ~ݎ  .ሻߑ
 
Also, let the view on the market can be expressed as the following linear function. 
 

ݒ ൌ ߤܲ  ߳, 
 
where P is k-by-n matrix corresponding to k views on the market along with k-vector v, and ߳ is the error 
term that follows ܰሺ0,  ,ሻ. Note that Ω represents the investor’s confidence on the view. For simplicityߗ
we set 
 

ߗ ൌ ൬
1
ܿ

െ 1൰  .்ܲߑܲ
 
For this specific choice of the uncertainty matrix Ω, c determines the confidence: values in Ω decrease as 
c increases from 0 to 1, which causes decrease in the variance for the view, thus making it more certain. 
For our tests, we use 0.01, 0.5 and 0.99 for the values of c. Then, it can be shown that the Black-Litterman 
estimators for the expected return and the covariance are given as follows. 
  
ߤ     ൌ ߤ  ்ܲߑሺ்ܲܲߑ  ݒሻିଵሺߗ െ  ሻ, andߤܲ
     
ߑ     ൌ ߑ െ ்ܲߑሺ்ܲܲߑ   .ߑሻିଵܲߗ
 
For the prior, μ and Σ, we employ the sample mean and the sample covariance of long-term (5 years) 
historical returns at each time period. P and v, which represent the investor’s view on the market, are 
constructed to reflect the performance persistence of the recent winners, or the momentum effect. They 
are chosen in such a way that the average value of the expected returns of recent top 10% winners is 
higher than that of the remaining 90% by an arbitrary amount v in annualized return. In other words, for 
the index set I of the recent top 10% winners, and ݊௪ and ݊, the number of winners and losers, 
respectably,  
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The optimal portfolio weight is calculated from the following expected utility maximization problem with 
a non-negativity constraint on the portfolio weights, since this model does not utilize the mean-variance 
approach. 
 

௪ஹॱܷሺݔܽܯ ௧ܹାଵሻ ൌ
1
ߛ

 ௧ܹାଵ,௦
ఊ

ܶ

்

ୀଵ
ൌ

1
ܶߛ

 ௧ܹାଵ, ௦
ఊ

்

ୀଵ
  for  γ  1 

 
An efficient frontier is generated by varying the risk-aversion coefficient (ߛሻ; ߛ ൌ 1 corresponds to the 
risk neutral case, and the resulting portfolio becomes more conservative as ߛ decreases. As in the Black-
Litterman model, we adopt 3-, 6-, 9-, 12-, 24-, 36- and 60-month as the parameter estimation periods.  
 
II.3. Robust Optimization: SOCP for Ellipsoidal Relaxation of μ 
 
Consider the following mean-variance problem. 
 
    Maximize   ߤ்ݓ      
    Subject to       ்ݓΣݓ  ௧௧ߪ 

ଶ  
ݓ1்                ൌ 1, ݓ  0 
 
Suppose the parameter μ is uncertain, but is known to lie in an ellipsoid induced by  ߤഥ  and ܲ: 
 

ߤ א ࣟ ൌ ሼߤҧ  ሻݑଶሺ݀|ݑܲ  ,ሽݍ where ݀ଶ is Euclidean norm. 
 
Note that the size of the ellipsoid increases as q gets large, so q can be interpreted as the degree of the 
uncertainty on μ.  
 
Now suppose we strive to obtain the robust asset allocation in a sense that the solution is optimal under 
the worst-case scenario. Then the mean-variable problem can be restated as follows: 
 
    Maximize       infఓࣟא    ߤ்ݓ 
    Subject to       ்ݓΣݓ  ௧௧ߪ 

ଶ  
ݓ1்                ൌ 1, ݓ  0 
 
Since for every given w,  
 

inf
µࣟא

ߤ்ݓ ൌ ҧߤ்ݓ  infሼܲݑ|݀ଶሺݑሻ  ሽݍ ൌ ҧߤ்ݓ െ ሻݓଶሺ்ܲ݀ݍ ൌ ҧߤ்ݓ െ  , ݓ்்ܲܲݓඥݍ
 
we have 
 
    Maximize ҧߤ்ݓ       െ   ݓ்்ܲܲݓ√ݍ
    Subject to       ்ݓΣݓ  ௧௧ߪ 

ଶ  . 
ݓ1்                ൌ 1, ݓ  0 
 
Therefore, the original problem with the ellipsoid relaxation can be expressed as 
 
    Maximize ҧߤ்ݓ       െ  ݖ
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    Subject to       ݀ଶሺߑ
భ
మ ݓሻ   ௧௧ߪ 

ݓ1்                ൌ 1, ݓ  0 
ሻݓଶሺ்ܲ݀ݍ                  ,ݖ
 
where ߑଵ/ଶ is a Cholesky decomposition of Σ. The final form is SOCP, which can be solved relatively 
easily via convex optimization techniques. Note that the additional constraint (݀ݍଶሺ்ܲݓሻ   plays a (ݖ
role of keeping w from moving toward the direction to which the uncertainty increases. See Boyd and 
Vandenberghe (2004), and Meucci (2007). 
 
There are three input parameters that should be estimated for the implementation: ߤҧ,  and ܲ. We employ ߑ
the sample mean and the sample covariance for ߤҧ,  Also, for simplicity, we choose P in such a way that .ߑ
்ܲܲ ൌ ݀݅ܽ݃ሺߑሻ. In addition we vary q from 0 to 1 to investigate the effect of the uncertainty level. As in 
the previous cases, parameters are estimated from 3-, 6-, 9-, 12-, 24-, 36- and 60-month historical data, in 
order to evaluate the impact of various momentum-based rules. 
 
II.4. Markowitz Model and General Experiment Settings 
 
We adopt the following traditional mean-variance problem with the non-negativity constraint as the 
benchmark model.  
 
    Maximize   ߤ்ݓ      
    Subject to       ்ݓΣݓ  ௧௧ߪ 

ଶ  
ݓ1்                ൌ 1, ݓ  0 
 
The sample mean and the sample covariance from 3-, 6-, 9-, 12-, 24-, 36- and 60-month historical data are 
employed for μ and Σ.  
 
For all four models, we conduct the following sequential portfolio allocation: at the beginning of the 
evaluation period, input parameters as described above, and the optimal allocation are determined. Then, 
the assets are held for 3-, 6- or 12-month based on the optimal weights and rebalanced every month to the 
initial weights (i.e. fixed mix portfolios). After the holding period has ended, another set of the allocation 
is conducted. The procedures are repeated until the end of the sample period. Table 1 summarizes four 
models and accompanied parameters. 
 

Table 1: Summary for Asset Allocation Models 
Scheme Model Market Estimators and Parameters 

Robust Estimator Black-Litterman 

- μ: sample mean from 60-month data 
- Σ: sample covariance from 60-month data 
- v and P: winners from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data 
ߗ - ൌ ቀଵ


െ 1ቁ  confidence on investors view. (c=0.01, 0.5, and 0.99) :.்ܲߑܲ

Re-sampled Portfolio Grauer-Hakansson - ݎ,௦: monthly return on asset j from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data 

Robust Optimization SOCP for ellipsoidal μ 
 ҧ: sample mean from 3-, 6-, 9-, 12-, 24-, 36- and 60-month dataߤ -
- Σ: sample covariance from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data 
- P: diagonal elements of Σ 

Markowitz Model Mean-Variance Model - μ: sample mean from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data 
- Σ: sample covariance from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data 

 
 
 
 



 

III. Dat
 
In this se
portfolio
characte
model se
the style
segment
segment
 
In this re
definitio
size/styl
time. Th
growth p
easily bu
bound to
may be f
compon
manager
 
Figure 2
the indu
sequenti
shrunken
industry
over the
quadran
constitue
 

This figur
from Dece
24-month 
positions o

 
A critica
the avera

ta: Benefits

ection, we di
o model. Cle
eristics of the
election. Cur
e prospects o
tation is simp
tation schem

egard, Mulve
ons can poten
le scheme. Fi
he reason is c
perspectives 
ut also poten
o form their p
forced to per
ents, when th
rs’ choices, w

2 shows how 
ustry segment
ial fashion. T
n from large

y (center in F
 sample peri
ts of the styl
ents of style/

Figure 2: D
re illustrates dri
ember 1996 to 
long period c

of the circles ar

al benefit fro
age correlati

s of Industr

iscuss the im
arly, the perf

e given assets
rrent practica
f stocks (e.g
ply a scheme

me can be imp

ey and Kim (
ntially impro
irst, an indus
clear: firms c
vary. This p

ntially improv
portfolios wi
rform undesi
he membersh
which may le

unstable the
tation schem

The technolo
-cap to smal
igure 2) has 
od. Also, the

le/size map. S
/size market 

Drift of Indus
ift of (a) techno
November 200

compared to 4 
re based on regr

om the indust
ions of marke

ry-wide Ma

mportance of 
formance of 
s. Efforts to 
al approache
., large-core,

e to cut the g
proved.  

(2008) illustr
ove performa
stry-wide seg
cannot easily
property not o
ve performan
ith stocks co
ired portfolio
hip for each 
ead to inferio

e style/size cl
me. Here, we 

gy industry (
l-cap, and th
been classifi

e oil and gas 
Since membe
break-outs h

stries in Style
ology, (b) healt
06. Relative pos
Russell indice

ressions of indu

try segmenta
et breakouts 

7 

arket Segm

employing g
f optimal asse
find asset cla
s typically d
, mid-growth
roup of inve

rate that a se
ance of invest
gmentation c
y change indu
only enables 
nce active fu
rresponding 

o adjustment
breakout cha
or investmen

lassifications
conduct styl
(left in Figur

hen grown ba
fied as large-c

industry (rig
ership of firm

have changed

e/Size Map f
thcare, and (c) 
sition of each c
s on a rolling 
ustry returns ag

ation is impro
from differe

mentation 

generic asset 
et allocation 
asses with go

divide the equ
h, small-valu
stable vehicl

egmentation s
tment vehicl

can provide m
ustries which
investors to 

unds; many m
to the styles
s to reflect th
anges. Such 
nt performanc

s have been f
le analysis ov
re 2) stays as
ack to large-c
cap, while its
ght in Figure
ms within an
d frequently.

from Decemb
oil & gas indus
circle represent
time basis. Th
ainst the Russe

oved diversif
ent segmenta

categories w
models is hi

ood propertie
uity market b
ue, etc.). Sinc
les, it is natu

scheme base
les, as compa
more consiste
h they belong

track each o
mutual fund m
s of the funds
he changes in
a procedure 
ce.  

for the last d
ver a recent t
s growth-orie
cap. Similarl
s growth per

e 2) has move
n industry is s

ber 1996 to N
stries in style/si
s the size and t
he circle sizes 
ell indices.  

fication poten
ation scheme

within an opt
ghly depend
es should pre
based on the 
ce the size/sty
ural to ask if t

ed on industry
ared to the cu
ent members
g to, while th
of the segmen
managers are
s. Thus, fund
n the benchm
typically lim

decade as com
time period i
ented, while 
y, the health

rspective has
ed over the th
stable, it is c

November 20
ize map. The s
the style of ind
increase as tim

ntial. Figure 
s. Typ-SS an

timal 
dent upon the
ecede the 
sizes and 
yle 
the current 

y-level 
urrent 
ship over 
heir sizes and
ntations 
e typically 
d managers 
mark 
mits the fund 

mpared to 
in a 
its size has 

hcare 
 changed 
hree 
lear that the 

006 
ample period is

dustries for each
me passes. The

3 depicts 
nd NON-SS 

e 

d 

s 
h 
e 

 



8 
 

represent the size/style segmentation scheme, while IND2 and IND4 correspond to the industry break-out. 
The message is clear: from the same stock market, one can obtain less correlated vehicles by applying the 
industry-wide segmentation scheme than the conventional size/style approach. It has a critical implication 
to the asset allocation models; it can provide better diversification for the broad asset allocation problems. 
 

Figure 3: Average Correlations within Different Market Segmentation Schemes 
This figure illustrates the average correlations for 4 different market breakouts defined in the top table. The sample period ranges 
from June 1995 to December 2007. For each of market segmentations, correlations for all possible index pairs are calculated 
from daily returns, and then averaged across those pairs. The unit time length is 6 months (126 trading days). See appendix for 
the list of Datastream sectors. 
 
Description Code Indices Included 

Typical Style/Size Breakouts Typ-SS R1000, R1000G, R1000V, RMid, RMidG, RMidV, R2000, R2000G, R2000V 
Non-Overlapping Style/Size Breakouts NOL-SS R200G, R200V, RMidG, RMidV, R2000G, R2000V 
DataStream Level 2 Sectors IND2 10 Industries Indices 
DataStream Level 4 Sectors IND4 38 Industries Indices 
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IV. Test Results 
 
In this section, the investment performance of the models introduced in section II is compared with 
several benchmark portfolios. To construct the portfolio corresponding to each model, we update 
estimators for the expected return and the covariance periodically, and employ optimization on a moving 
basis. There are two critical parameters: “look-back period” refers to the length of the historical data to 
estimate return and covariance matrices, and “holding period” shows the investment period for each asset 
allocation decision. For instance, at a given time point, a strategy with 3-month look-back period and 6-
month holding period means that the inputs are estimated from the daily returns of past 3 months, and 
once the optimal allocation is obtained, the portfolio is held for 6 months. Note that all assets in a 
portfolio were rebalanced to their corresponding weights at the end of each month. Also, in order to 
eliminate the timing bias, the average returns from portfolio with different starting points are employed. 
The extra parameters for robust optimization and Black-Litterman have been chosen as mentioned in 
section II. In this context, we apply the Markowitz model and its variants to the industries as defined in 
Datastream. There are 38 industries with one market index, and we employ daily data from January 1976 
to December 2007. Since the models require an initial period to estimate parameters, all constructed 
portfolios begin on January 1980. See the appendix for the list of industries. 
 
IV.1. Model Comparisons: Which Model is better? 
 
The historical performance is obtained after sequentially solving the relevant optimization problems, and 
calculating the return series for each model (Figure 4). Different risk tolerance levels are set to generate 
points along the line. For (a)-(f) in Figures 4, the holding period is fixed to 6 months, while the look-back 
period are set to 3-, 6-, 12-, 24-, 36- and 60-month, respectively.  
 
When the look-back period is 3-month, the Black-Litterman model dominates the other models (Figure 4-
(a)), particularly at the points corresponding to the highly risk portfolios. However, robust optimization 
and Grauber-Hakansson models produce better results when 12-months look-back period is adopted 
(From Figure 4-(c)). Furthermore, there is no dominating model in Figures 4-(e); returns are not 
significantly different from each other, while none of the approaches offer a promising decrease in 
volatility with respect to the others. In summary, for these tests, investment performance across different 
models is comparable to each other, and it highly depends on the parameter settings.  
 
There are two other meaningful observations. First, the Markowitz model performs fairly well in practical 
settings over the entire sample period. Second, while the ex post performance lines in the mean-variance 
plane preserve upward slopes and concave shapes when the look-back period is equal or less than a year, 
they become downward sloping when it is longer than a year. Thus, performance deteriorates as the level 
of the risk tolerance increases for look-back period greater than one year. In fact, these findings coincide 
with the superior performance of the momentum strategy, and the discussion follows in the next 
subsection. Note that the results lead to the same conclusion when different holding periods are employed 
(3-, and 12-month), while the investment performance generally becomes worse as the holding period get 
longer. 
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Figure 4: Historical Performance of 4 Different Models from Jan.1980 to Dec.2007 
This figure illustrates the historical investment performance of the 4 different models – Markowitz (M), Black Litterman (BL), 
Grauber-Hakansson (H), and robust optimization (R) Models. The sample period is 1980 to 2007. Holding period is set to 6-
month across all three figures, while look-back periods are set to (a) 3-month, (b) 6-month, (c) 12-month, (d) 24-month, (e) 36-
month, and (f) 60-month.  

 
 

 
(a) 3-month look-back period                                                  (b) 6-month look-back period 

 
 

 
(c) 12-month look-back period                                                  (d) 24-month look-back period 

 
 

 
(e) 36-month look-back period                                             (f) 60-month look-back period 
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IV.2. Comparisons along Different Look-back Periods: Blending in Momentum Effects 
 
In this subsection, we evaluate several look-back periods. Figure 5 illustrates performance for different 
look-back periods (3-, 6-, 9-, 12-, 24-, 36-, 60-month) with a 6-month holding period. For all models, 
portfolios with short term look-back periods (3-, 6-, 9-, 12-month) show superior performance to ones 
with longer look-back periods (24-, 36-, and 60-month). Furthermore, the lines change shape from being 
upward sloping and concave to downward sloping and convex as the look-back period gets longer. As 
pointed out in the previous subsection, it implies that taking higher risk actually reduces the ex post 
returns. Tests with different holding periods (3-, and 12-month) yield similar results. 
 

       Figure 5: Performance across Different Look-back Periods 
This figure illustrates the historical investment performance of each of the 4 different models with different look-back periods 
(LB). The sample period is 1980 to 2007. Holding period is set to 6 months across all three figures, while look-back periods are 
set to 3-, 6-, 9-, 12-, 24-, 36- and 60-month.  
 

 
                          (a) Markowitz Model                                                               (b) Black-Litterman 

 
                          (c) Grauber-Hakansson                                                           (d) robust optimization 
 
These results imply that estimating market parameters from short look-back periods are better than ones 
from longer look-back periods. All models rely on the assumption that estimated returns and covariance 
matrices are proxies for the future values of these parameters. So, their performance depends on the 
persistence of these estimates along time. Since industries with better performance during the look-back 
periods would have higher weights in the portfolio for the subsequent period regardless of the model 
choice, it is evident that recent data provides better forecast on the distribution of the future returns.  
 
Why is the shorter holding period better? The answers can be readily found from the equity price 
momentum effects: empirical studies suggest that winner stocks for the past 3 to 12 months outperform 
loser stocks for the following 3 to 12 months and show worse performance after 3 to 5 years. Therefore, 
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when shorter holding periods are employed, the models put more weights on the recent winners, leading 
to a successful blend in of the momentum effects with optimal asset allocation models. In contrast, the 
portfolios from longer look-back period bet against the momentum effects, which would potentially cause 
inferior investment performance. 

 
One significant question remains: is the momentum effect strong enough to improve investment 
performance of the asset allocation models? To see this, we compare the historical performance of the 
models to three benchmark portfolios – the market index, 60-40 fixed mix portfolio, and the long-only 
momentum portfolio (Figure 6). The 60-40 mix is constructed by investing 60% of the wealth to market 
index, and 40% to treasury bills with monthly rebalancing. Also, the performance of the long-only 
momentum portfolio is obtained by holding the winner industries based on the past 3-, 6-, 9-, and 12-
month returns for 6 subsequent months. The chosen industries are equally weighted and rebalanced every 
month. For the optimal asset allocation portfolios, 6-month look-back period and 6-month holding period 
are employed; this setting provides relatively good investment performance for all four models. 
 
Figure 6 provides a clear answer for the question. The performance of long-only momentum strategy lies 
on the best performance line of the optimal asset allocation models in the mean-variance plane for the 
entire sample period, meaning that the simple momentum rule has performed equivalently, if not better, to 
the optimization models. This implies that the momentum effects have been significant, and it can 
improve investment performance, if investors utilize the effects properly. It is interesting to note that the 
momentum strategy shows stronger performance during the second sub-period, which corresponds to the 
period after the momentum effects become popular due to the publication of Jegadeesh and Titman 
(1993). 
 
We are now ready to explain why the traditional Markowitz model has performed relatively well 
compared to its variants, especially when shorter holding periods are employed. The variants are designed 
to overcome the high sensitivity of the Markowitz model to input parameters. Therefore, in a sense, they 
smooth the result toward the direction that the optimal solutions wouldn’t vary too much as the estimated 
input parameters change. So, higher weights on recent winners would be penalized, which would 
potentially discount the momentum effects. In contrast, the optimal weights from the Markowitz model is 
obtained via conventional optimization procedures, so it has a better chance of putting higher weights on 
the winners during the look-back period than its variants, thus provides better utilization of the 
momentum effects. It gives us a simple, yet effective recipe to exploit the momentum effects in the 
context of the optimal asset allocation: investment performance can be improved by estimating the market 
parameters from relatively recent historical data (3 to 12 months). 
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Figure 6: Performance Comparisons to Selected Benchmarks 
This figure illustrates the historical investment performance of 4 different models with 6-month look-back period and 6-month 
holding period. In addition, three benchmark portfolios are shown – market index, 60-40 fixed mix portfolio and long-only 
momentum strategy.  
 

 
(a) Entire Sample Period: 1980-2007 

 
(b) First Half of the Sample Period: 1980-1993 

 
(c) Second Half of the Sample Period: 1994-2007 
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V. Conclusions and Future Directions 
 
In this paper, we construct various portfolios from four different optimal asset allocation models, and 
compare the historical performance during 1980 to 2007. There are several meaningful findings: 1) the 
traditional Markowitz model has performed reasonably well as compared to its robust versions; 2) 
portfolios with shorter look-back periods (equal or less than a year) outperform ones with longer look-
back periods in all cases; 3) these observations are in fact consistent with the momentum effects, which 
imply the recent winners tend to have better performance than the recent losers; and 4) investment 
performance can be improved by taking the momentum effects into account by utilizing the market 
parameter estimators from recent historical data. 
 
What are possible extensions? First, it would be interesting to allow shorting of assets. Again, the 
momentum strategy could be the benchmark, since empirical results show that recent momentum losers 
will continue to underperform the market for subsequent periods. Shorting of industry-level assets is 
becoming more practical due to the emergence of the ETFs. In many cases, ETFs can be easily shorted.  
 
Second, the described methodology can be applied to other extensions of the traditional Markowitz model, 
such as Stein estimators (Jorion (1986)). We suspect that the traditional Markowitz model will again 
perform relatively well.  
 
The third domain for extending the analysis involves integrating asset management with borrowing 
(leverage) and other liability related issues – asset and liability management (ALM). In many of these 
applications such as pension plans, university endowments, and hedge funds, there are decided 
advantages to construct multi-period ALM models. The ex post success of momentum strategy shall 
apply to these optimization models. But this conjecture needs to be evaluated with real world experiences. 
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Appendix 
 
Datastream Industry Classification 

Level 2 (10 Indices) Level 3 (18 Indices) Level 4 (38 Indices) 

Oil & Gas Oil & Gas Oil & Gas Producers; Oil Equipment, Services & Distribution 

Basic Materials 
Chemicals Chemicals 

Basic Resources Forestry & Paper; Industrial Metals; Mining 

Industrials 

Construction & Materials Construction & Materials 

Industrial Goods & Services 
Aerospace & Defense; General Industrials; Electronic & 
Electrical Equipment; Industrial Engineering; Industrial 
Teleportation; Support Services 

Consumer Goods 

Automobiles & Parts Automobiles & Parts 

Food & Beverage Beverages; Food Producers 

Personal & Household Goods Household Goods; Leisure Goods; Personal Goods; Tobacco 

Health Care Health Care Health Care Equipment & Services; Pharmaceuticals & 
Biotechnology 

Consumer Services 

Retail Food & Drug Retailers; General Retailers; 

Media Media 

Travel & Leisure Travel & Leisure 

Telecommunication Telecommunication Fixed Line Telecommunication; Mobile Telecommunication 

Utilities Utilities Electricity; Gas, Water & Multi-utilities 

Financials 

Banks Banks 

Insurance Nonlife Insurance; Life Insurance 

Financial Services Real Estate; General Financials; Equity Investment Instruments 

Technology Technology Software & Computer services; Technology Hardware & 
Equipment 

Note: DataStream industry classification is almost identical to Dow-Jones/FTSE ICB (Industry Classification Benchmark).  
 


