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Abstract

Several versions of the Markowitz portfolio model are evaluated with respect to patterns in equity
markets. Much research has shown that strategies based on momentum have generated superior risk
adjusted returns. We form a long-only portfolio of momentum strategies via industry-level assets; the
strategy beats many others over numerous markets and time periods and provides a good benchmark for
competing optimization models. Simple Markowitz models are quite effective, as long as the proper
historical time period is chosen for the stochastic projections. Investment performance of optimal asset
allocation models can be improved by considering the momentum effects in the parameter estimation
procedures.

l. Introduction

Since the early work of Markowitz (1952, 1956), the single-period mean-variance model has been the
norm in portfolio management. Over the years, numerous variants of the core model have been proposed
and implemented to improve performance in practical settings. However, empirical tests suggest that
investment performance has not been outstanding in many cases. In this paper, we illustrate examples to
increase the investment performance of such models by actively exploiting a significant market anomaly
— momentum effects.

The most persistent equity anomaly involves the predictability of stock returns based on past performance,
which is often referred to as the momentum effect. The typical investment strategy in academic articles
that exploits the effect is to buy winners and sell losers based on the intermediate term performance (3 to
12 months) proposed by Jegadeesh and Titman (1993). Many papers such as Cleary et al. (1998),
Rouwenbhorst (1998), Kang et al. (2002), and Demir et al. (2004) have documented that such a strategy is
profitable, except a few stock markets (Liu and Lee (2001) and Hameed and Kusnadi (2002)). Further,
money managers, dominant players in the stock market, are reported to not only employ the momentum
effect, but also improve their performance by applying it. For instance, Grinblatt et al. (1995), Nofsinger
and Sias (1999), Sias et al. (2001), Badrinath and Wahal (2002), Sapp and Tiwari (2004), and Sias (2004)
document that a significant proportion of active funds adopt the momentum strategy as their equity
selection rules. Carhart (1997) illustrates that the performance persistence of mutual funds can be
explained by the one-year momentum effect. Recently, Mulvey and Kim (2008) show that the active
equity funds in the U.S. share similar performance patterns with the industry-level long-only momentum
strategy, and the similarity is stronger for the funds with good performance. Thus, we apply the
specialized momentum strategy as a basis, and benchmark for single-period optimization models in the
equity domain.

Unlike traditional approaches, we adopt industry-level data for the empirical analysis. Why do we employ
industry-level data? First, compared to stock-level analysis, it reduces idiosyncratic risks. Since the mean-
variance models require the estimated market parameters, it may lead to unstable test results to adopt
stock-level data without employing specialized parameter estimation techniques. In contrast, one can



readily eliminate such issues by analyzing the broad asset classes such as industries. Second, the strategy
is becoming easy to implement due to the introduction of various exchange traded funds (ETFs). In
addition, the industry-level momentum strategy has displayed outstanding performance (Mulvey and Kim
(2007)). Importantly, one can obtain better diversification benefits from industry-wide market
segmentation, as compared to the current size/style break-outs. We discuss details of the issue in the later
section.

The main objectives of this paper are as follows: 1) The Markowitz model requires estimating parameters
for return distributions for the assets, and these are often hard to estimate. We employ momentum patterns
to see if they help with a Markowitz model and several variants. 2) In addition, we compare the
performance of several popular mean-variance models in various settings.

The remainder of the paper is organized as follows. In section II, we briefly discuss four asset allocation
models employed in this paper — traditional Markowitz, Black-Litterman, Grauber-Hakansson, and robust
optimization models. In the following section, we illustrate how the industry-wide equity market
segmentation can provide better diversification benefits. Empirical results and conclusions follow.

1. Models: Markowitz Model and its Variants

In spite of its popularity, several issues arise regarding the practical implementation of the Markowitz
model. A major issue is its sensitivity to input changes. Since the optimal portfolio from the mean-
variance approach is chosen among the extreme points of the feasible region, small changes in the
estimated parameters of the market distribution can lead radically different optimal points. As a
consequence, relatively small errors in the parameter estimation can potentially cause a steep decrease of
investment performance. Such a high sensitivity is undesirable for practical applications.

Many models have been proposed to overcome this shortcoming. A popular approach is to utilize robust
estimators for the mean and the variance. Instead of using the unbiased estimators for the market
distribution, one can reduce the estimation error by shrinking the sample mean and the sample covariance
toward structured estimators. Such shrinkage methods are well documented in Jobson and Korkie (1981),
Jorion (1986), Pastor (2000), and Resnick and Larsen (2001). Also, in a similar context, Black and
Litterman (1990) propose a model to blend the investor’s view with the market estimators. In their model,
the investor’s view, which is represented as a linear relation among the expected returns of the individual
assets, is mixed to the market equilibrium via a Bayesian approach. See Satchell and Scowcroft (2000),
and Idzorek (2004) for the detailed discussion.

An alternative approach is the portfolio re-sampling technique. In this approach, market parameters are
re-sampled via Monte Carlo simulation, and the portfolio weights are obtained by averaging the optimal
solutions of individual mean-variance problems with the generated estimators. The Michaud model
(1998), for example, generates random samples from the estimated mean and variance, and obtains a new
set of market parameter estimators from samples. The efficient frontier corresponding to this simulation is
produced by minimizing a set of evenly spaced portfolio variances. After repeating the procedure
sufficiently often, one can gain the re-sampled portfolio weight by averaging the optimal allocations with
the same variance ranking. In a sense, this approach addresses the sensitivity issue by averaging the
outputs from perturbed samples, while the robust estimator methods smoothes the estimators.

There also has been significant effort to improve the robustness of the optimal portfolio allocation by
analytically reflecting the uncertainty of estimated parameters with the help of convex analysis. These



models typically define the uncertainty set for the parameters and formulate the optimal allocation as a
convex optimization problem to consider the worst case. Accordingly, this approach is referred to as a
robust optimization model. For instance, when the mean return or the covariance is relaxed to lie in an
ellipsoid, the mean-variance problem can be rewritten as a second order cone programming (SOCP)
problem. If the covariance takes a finite number of matrices, it is formulated as a quadratic constrained
quadratic programming (QCQP) problem. Note that both SOCP and QCQP are convex programs which
can be solved efficiently. See Ben-Tal and Nemirovski (1995), El Ghaoui and Lebret (1997), Ben-Tal and
Nemirovski (2001), and Boyd and Vandenberghe (2004) for the further discussion.

We pick one model for each of the approaches as well as the traditional Markowitz model to evaluate
their historical performance. Black-Litterman model, Grauer-Hakansson model (1985), and SOCP model
for the mean relaxation are chosen for the robust parameter estimation, re-sampled portfolio, and robust
optimization approaches, respectably. Meucci (2005) and Fabozzi et al. (2007) discuss these models as
well as other approaches in detail.

I1.1. Robust Estimator: Black-Litterman

We employ a simplified version of Black-Litterman model described in Meucci (2007). With the
normality assumption, let the prior on the market be i« and 2. That is, the n-dimensional random return
vector

r~N(y, ).
Also, let the view on the market can be expressed as the following linear function.
v=Pu+te,

where P is k-by-n matrix corresponding to k views on the market along with k-vector v, and € is the error
term that follows N (0, 2). Note that Q represents the investor’s confidence on the view. For simplicity,
we set

1 T

0= (— — 1) PXP".
c

For this specific choice of the uncertainty matrix £, ¢ determines the confidence: values in £ decrease as

¢ increases from 0 to 1, which causes decrease in the variance for the view, thus making it more certain.

For our tests, we use 0.01, 0.5 and 0.99 for the values of c. Then, it can be shown that the Black-Litterman
estimators for the expected return and the covariance are given as follows.

pg, = p+ XPT(PXPT + 0) (v — Pu), and
S, =% — XPT(PZPT + 0)~1P3.

For the prior, 1 and 2, we employ the sample mean and the sample covariance of long-term (5 years)
historical returns at each time period. P and v, which represent the investor’s view on the market, are
constructed to reflect the performance persistence of the recent winners, or the momentum effect. They
are chosen in such a way that the average value of the expected returns of recent top 10% winners is
higher than that of the remaining 90% by an arbitrary amount v in annualized return. In other words, for
the index set 7 of the recent top 10% winners, and n,, and n;, the number of winners and losers,
respectably,
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We choose 3-, 6-, 9-, 12-, 24-, 36- and 60-month evaluation time lengths to obtain P and 1% for v. Once
all input parameters are set, the mean-variance approach is employed to obtain the optimal portfolio
allocation. Note that this approach is consistent with the long-only momentum strategies proposed in
Mulvey and Kim (2007). They construct the long-only industry-level momentum portfolios by holding
recent top 10% winner industries with equal weights in several stock markets. The portfolios have
outperformed the benchmark market indices in most of the tested markets.

11.2. Re-sampled Portfolio: Grauer-Hakansson

Several authors have successfully implemented a sequence of single-period optimization model based on
optimizing a Von Neumann-Morgenstern (VM) expected utility function. See, for example, Grauer and
Hakansson (1985), and Mulvey et al. (2006). Also, Markowitz (1952) discusses the advantages of
employing the model. Herein, we implement the model via an iso-elastic utility function:

1
ulw) = ;w”, wherey < 1.

VM model is based on the one-step tree representation of scenarios as illustrated in Figure 1. Given the
wealth W, at time ¢, the future wealth at time ¢+/ for scenario s; is W;(1 + Ry,) with a probability of 7 ,
where Rg; is the portfolio return between 7 and 7+1. That is,

Ry, = ZjwjTj s,

where w; is the weight on assetj and 7; 5, is the return of asset j for scenario s;. We use each monthly
observation as one scenario and set the probability equal across scenarios. For instance, when 7-month
historical data is employed for the scenario construction, the asset returns at month i is set to be the
scenario return for scenario s;, and 1/7 is assigned as the probability for each scenario, thus having T
scenarios total.

Figure 1: Tree representation of the Grauer-Hakansson model
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The optimal portfolio weight is calculated from the following expected utility maximization problem with
a non-negativity constraint on the portfolio weights, since this model does not utilize the mean-variance
approach.
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An efficient frontier is generated by varying the risk-aversion coefficient (y); ¥ = 1 corresponds to the
risk neutral case, and the resulting portfolio becomes more conservative as y decreases. As in the Black-
Litterman model, we adopt 3-, 6-, 9-, 12-, 24-, 36- and 60-month as the parameter estimation periods.
11.3. Robust Optimization: SOCP for Ellipsoidal Relaxation of u
Consider the following mean-variance problem.

Maximize wTpu

Subjectto  WTEIW < 0fyrger

1"T'w=1w=>0

Suppose the parameter u is uncertain, but is known to lie in an ellipsoid induced by 7 and P:

u € € :={i+ Puld,(u) < q}, where d, is Euclidean norm.

Note that the size of the ellipsoid increases as g gets large, so ¢ can be interpreted as the degree of the
uncertainty on u.

Now suppose we strive to obtain the robust asset allocation in a sense that the solution is optimal under
the worst-case scenario. Then the mean-variable problem can be restated as follows:

Maximize  inf,ee w'p
Subjectto  WTEwW < 04 get
1"Tw=1, w=>0

Since for every given w,
1r€1£ wlu =wTi+ inf{Pu|d,(w) < q} =wTji — qd,(PTw) = wTjii — gywTPPTw,
u

we have

Maximize  wTji— qVwTPPTw
Subjectto  W'EIW < 0fyrger -
1"T'w=1w=>0

Therefore, the original problem with the ellipsoid relaxation can be expressed as

Maximize wTji—z
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Subjectto  d(22w) < O¢arget
1Tw=1,w=0
qd,(P™w) < z,

where X1/ is a Cholesky decomposition of X. The final form is SOCP, which can be solved relatively
easily via convex optimization techniques. Note that the additional constraint (gd,(PTw) < z) plays a
role of keeping w from moving toward the direction to which the uncertainty increases. See Boyd and
Vandenberghe (2004), and Meucci (2007).

There are three input parameters that should be estimated for the implementation: j1, 2 and P. We employ
the sample mean and the sample covariance for j1, 2. Also, for simplicity, we choose P in such a way that
PPT = diag(X). In addition we vary ¢ from 0 to 1 to investigate the effect of the uncertainty level. As in
the previous cases, parameters are estimated from 3-, 6-, 9-, 12-, 24-, 36- and 60-month historical data, in
order to evaluate the impact of various momentum-based rules.

11.4. Markowitz Model and General Experiment Settings

We adopt the following traditional mean-variance problem with the non-negativity constraint as the
benchmark model.

Maximize wTpu
Subjectto  wTIw < Utzarget
1Tw=1,w=>0

The sample mean and the sample covariance from 3-, 6-, 9-, 12-, 24-, 36- and 60-month historical data are
employed for ¢ and 2.

For all four models, we conduct the following sequential portfolio allocation: at the beginning of the
evaluation period, input parameters as described above, and the optimal allocation are determined. Then,
the assets are held for 3-, 6- or 12-month based on the optimal weights and rebalanced every month to the
initial weights (i.e. fixed mix portfolios). After the holding period has ended, another set of the allocation
is conducted. The procedures are repeated until the end of the sample period. Table 1 summarizes four
models and accompanied parameters.

Table 1: Summary for Asset Allocation Models

Scheme Model Market Estimators and Parameters

- 1: sample mean from 60-month data
) ) - 2 sample covariance from 60-month data
Robust Estimator Black-Litterman |\, and P: winners from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data

-0 = (% - 1) PXPT.: confidence on investors view. (¢c=0.01, 0.5, and 0.99)

Re-sampled Portfolio Grauer-Hakansson | 75, monthly return on asset j from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data

- i: sample mean from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data
Robust Optimization | SOCP for ellipsoidal 4 |- 2 sample covariance from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data
- P: diagonal elements of X

- «: sample mean from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data

Markowitz Model Mean-Variance Model - 2 sample covariance from 3-, 6-, 9-, 12-, 24-, 36- and 60-month data




I11. Data: Benefits of Industry-wide Market Segmentation

In this section, we discuss the importance of employing generic asset categories within an optimal
portfolio model. Clearly, the performance of optimal asset allocation models is highly dependent upon the
characteristics of the given assets. Efforts to find asset classes with good properties should precede the
model selection. Current practical approaches typically divide the equity market based on the sizes and
the style prospects of stocks (e.g., large-core, mid-growth, small-value, etc.). Since the size/style
segmentation is simply a scheme to cut the group of investable vehicles, it is natural to ask if the current
segmentation scheme can be improved.

In this regard, Mulvey and Kim (2008) illustrate that a segmentation scheme based on industry-level
definitions can potentially improve performance of investment vehicles, as compared to the current
size/style scheme. First, an industry-wide segmentation can provide more consistent membership over
time. The reason is clear: firms cannot easily change industries which they belong to, while their sizes and
growth perspectives vary. This property not only enables investors to track each of the segmentations
easily but also potentially improve performance active funds; many mutual fund managers are typically
bound to form their portfolios with stocks corresponding to the styles of the funds. Thus, fund managers
may be forced to perform undesired portfolio adjustments to reflect the changes in the benchmark
components, when the membership for each breakout changes. Such a procedure typically limits the fund
managers’ choices, which may lead to inferior investment performance.

Figure 2 shows how unstable the style/size classifications have been for the last decade as compared to
the industry segmentation scheme. Here, we conduct style analysis over a recent time period in a
sequential fashion. The technology industry (left in Figure 2) stays as growth-oriented, while its size has
shrunken from large-cap to small-cap, and then grown back to large-cap. Similarly, the healthcare
industry (center in Figure 2) has been classified as large-cap, while its growth perspective has changed
over the sample period. Also, the oil and gas industry (right in Figure 2) has moved over the three
quadrants of the style/size map. Since membership of firms within an industry is stable, it is clear that the
constituents of style/size market break-outs have changed frequently.

Figure 2: Drift of Industries in Style/Size Map from December 1996 to November 2006
This figure illustrates drift of (a) technology, (b) healthcare, and (c) oil & gas industries in style/size map. The sample period is
from December 1996 to November 2006. Relative position of each circle represents the size and the style of industries for each
24-month long period compared to 4 Russell indices on a rolling time basis. The circle sizes increase as time passes. The
positions of the circles are based on regressions of industry returns against the Russell indices.
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A critical benefit from the industry segmentation is improved diversification potential. Figure 3 depicts
the average correlations of market breakouts from different segmentation schemes. Typ-SS and NON-SS



represent the size/style segmentation scheme, while IND2 and IND4 correspond to the industry break-out.
The message is clear: from the same stock market, one can obtain less correlated vehicles by applying the
industry-wide segmentation scheme than the conventional size/style approach. It has a critical implication
to the asset allocation models; it can provide better diversification for the broad asset allocation problems.

Figure 3: Average Correlations within Different Market Segmentation Schemes
This figure illustrates the average correlations for 4 different market breakouts defined in the top table. The sample period ranges
from June 1995 to December 2007. For each of market segmentations, correlations for all possible index pairs are calculated

from daily returns, and then averaged across those pairs. The unit time length is 6 months (126 trading days). See appendix for
the list of Datastream sectors.

Description Code Indices Included
Typical Style/Size Breakouts Typ-SS R1000, R1000G, R1000V, RMid, RMidG, RMidV, R2000, R2000G, R2000V
Non-Overlapping Style/Size BreakoutsNOL-SS R200G, R200V, RMidG, RMidV, R2000G, R2000V
DataStream Level 2 Sectors IND2 10 Industries Indices
DataStream Level 4 Sectors IND4 38 Industries Indices
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IV. Test Results

In this section, the investment performance of the models introduced in section II is compared with
several benchmark portfolios. To construct the portfolio corresponding to each model, we update
estimators for the expected return and the covariance periodically, and employ optimization on a moving
basis. There are two critical parameters: “look-back period” refers to the length of the historical data to
estimate return and covariance matrices, and “holding period” shows the investment period for each asset
allocation decision. For instance, at a given time point, a strategy with 3-month look-back period and 6-
month holding period means that the inputs are estimated from the daily returns of past 3 months, and
once the optimal allocation is obtained, the portfolio is held for 6 months. Note that all assets in a
portfolio were rebalanced to their corresponding weights at the end of each month. Also, in order to
eliminate the timing bias, the average returns from portfolio with different starting points are employed.
The extra parameters for robust optimization and Black-Litterman have been chosen as mentioned in
section II. In this context, we apply the Markowitz model and its variants to the industries as defined in
Datastream. There are 38 industries with one market index, and we employ daily data from January 1976
to December 2007. Since the models require an initial period to estimate parameters, all constructed
portfolios begin on January 1980. See the appendix for the list of industries.

1V.1. Model Comparisons: Which Model is better?

The historical performance is obtained after sequentially solving the relevant optimization problems, and
calculating the return series for each model (Figure 4). Different risk tolerance levels are set to generate
points along the line. For (a)-(f) in Figures 4, the holding period is fixed to 6 months, while the look-back
period are set to 3-, 6-, 12-, 24-, 36- and 60-month, respectively.

When the look-back period is 3-month, the Black-Litterman model dominates the other models (Figure 4-
(a)), particularly at the points corresponding to the highly risk portfolios. However, robust optimization
and Grauber-Hakansson models produce better results when 12-months look-back period is adopted
(From Figure 4-(c)). Furthermore, there is no dominating model in Figures 4-(e); returns are not
significantly different from each other, while none of the approaches offer a promising decrease in
volatility with respect to the others. In summary, for these tests, investment performance across different
models is comparable to each other, and it highly depends on the parameter settings.

There are two other meaningful observations. First, the Markowitz model performs fairly well in practical
settings over the entire sample period. Second, while the ex post performance lines in the mean-variance
plane preserve upward slopes and concave shapes when the look-back period is equal or less than a year,
they become downward sloping when it is longer than a year. Thus, performance deteriorates as the level
of the risk tolerance increases for look-back period greater than one year. In fact, these findings coincide
with the superior performance of the momentum strategy, and the discussion follows in the next
subsection. Note that the results lead to the same conclusion when different holding periods are employed
(3-, and 12-month), while the investment performance generally becomes worse as the holding period get
longer.



Figure 4: Historical Performance of 4 Different Models from Jan.1980 to Dec.2007
This figure illustrates the historical investment performance of the 4 different models — Markowitz (M), Black Litterman (BL),
Grauber-Hakansson (H), and robust optimization (R) Models. The sample period is 1980 to 2007. Holding period is set to 6-
month across all three figures, while look-back periods are set to (a) 3-month, (b) 6-month, (¢) 12-month, (d) 24-month, (e) 36-
month, and (f) 60-month.
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1VV.2. Comparisons along Different Look-back Periods: Blending in Momentum Effects

In this subsection, we evaluate several look-back periods. Figure 5 illustrates performance for different
look-back periods (3-, 6-, 9-, 12-, 24-, 36-, 60-month) with a 6-month holding period. For all models,
portfolios with short term look-back periods (3-, 6-, 9-, 12-month) show superior performance to ones
with longer look-back periods (24-, 36-, and 60-month). Furthermore, the lines change shape from being
upward sloping and concave to downward sloping and convex as the look-back period gets longer. As
pointed out in the previous subsection, it implies that taking higher risk actually reduces the ex post
returns. Tests with different holding periods (3-, and 12-month) yield similar results.

Figure 5: Performance across Different Look-back Periods
This figure illustrates the historical investment performance of each of the 4 different models with different look-back periods
(LB). The sample period is 1980 to 2007. Holding period is set to 6 months across all three figures, while look-back periods are
set to 3-, 6-, 9-, 12-, 24-, 36- and 60-month.
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These results imply that estimating market parameters from short look-back periods are better than ones
from longer look-back periods. All models rely on the assumption that estimated returns and covariance
matrices are proxies for the future values of these parameters. So, their performance depends on the
persistence of these estimates along time. Since industries with better performance during the look-back
periods would have higher weights in the portfolio for the subsequent period regardless of the model
choice, it is evident that recent data provides better forecast on the distribution of the future returns.

Why is the shorter holding period better? The answers can be readily found from the equity price

momentum effects: empirical studies suggest that winner stocks for the past 3 to 12 months outperform
loser stocks for the following 3 to 12 months and show worse performance after 3 to 5 years. Therefore,

11



when shorter holding periods are employed, the models put more weights on the recent winners, leading
to a successful blend in of the momentum effects with optimal asset allocation models. In contrast, the
portfolios from longer look-back period bet against the momentum effects, which would potentially cause
inferior investment performance.

One significant question remains: is the momentum effect strong enough to improve investment
performance of the asset allocation models? To see this, we compare the historical performance of the
models to three benchmark portfolios — the market index, 60-40 fixed mix portfolio, and the long-only
momentum portfolio (Figure 6). The 60-40 mix is constructed by investing 60% of the wealth to market
index, and 40% to treasury bills with monthly rebalancing. Also, the performance of the long-only
momentum portfolio is obtained by holding the winner industries based on the past 3-, 6-, 9-, and 12-
month returns for 6 subsequent months. The chosen industries are equally weighted and rebalanced every
month. For the optimal asset allocation portfolios, 6-month look-back period and 6-month holding period
are employed; this setting provides relatively good investment performance for all four models.

Figure 6 provides a clear answer for the question. The performance of long-only momentum strategy lies
on the best performance line of the optimal asset allocation models in the mean-variance plane for the
entire sample period, meaning that the simple momentum rule has performed equivalently, if not better, to
the optimization models. This implies that the momentum effects have been significant, and it can
improve investment performance, if investors utilize the effects properly. It is interesting to note that the
momentum strategy shows stronger performance during the second sub-period, which corresponds to the
period after the momentum effects become popular due to the publication of Jegadeesh and Titman
(1993).

We are now ready to explain why the traditional Markowitz model has performed relatively well
compared to its variants, especially when shorter holding periods are employed. The variants are designed
to overcome the high sensitivity of the Markowitz model to input parameters. Therefore, in a sense, they
smooth the result toward the direction that the optimal solutions wouldn’t vary too much as the estimated
input parameters change. So, higher weights on recent winners would be penalized, which would
potentially discount the momentum effects. In contrast, the optimal weights from the Markowitz model is
obtained via conventional optimization procedures, so it has a better chance of putting higher weights on
the winners during the look-back period than its variants, thus provides better utilization of the
momentum effects. It gives us a simple, yet effective recipe to exploit the momentum effects in the
context of the optimal asset allocation: investment performance can be improved by estimating the market
parameters from relatively recent historical data (3 to 12 months).

12



Figure 6: Performance Comparisons to Selected Benchmarks
This figure illustrates the historical investment performance of 4 different models with 6-month look-back period and 6-month
holding period. In addition, three benchmark portfolios are shown — market index, 60-40 fixed mix portfolio and long-only
momentum strategy.
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V. Conclusions and Future Directions

In this paper, we construct various portfolios from four different optimal asset allocation models, and
compare the historical performance during 1980 to 2007. There are several meaningful findings: 1) the
traditional Markowitz model has performed reasonably well as compared to its robust versions; 2)
portfolios with shorter look-back periods (equal or less than a year) outperform ones with longer look-
back periods in all cases; 3) these observations are in fact consistent with the momentum effects, which
imply the recent winners tend to have better performance than the recent losers; and 4) investment
performance can be improved by taking the momentum effects into account by utilizing the market
parameter estimators from recent historical data.

What are possible extensions? First, it would be interesting to allow shorting of assets. Again, the
momentum strategy could be the benchmark, since empirical results show that recent momentum losers
will continue to underperform the market for subsequent periods. Shorting of industry-level assets is
becoming more practical due to the emergence of the ETFs. In many cases, ETFs can be easily shorted.

Second, the described methodology can be applied to other extensions of the traditional Markowitz model,
such as Stein estimators (Jorion (1986)). We suspect that the traditional Markowitz model will again
perform relatively well.

The third domain for extending the analysis involves integrating asset management with borrowing
(leverage) and other liability related issues — asset and liability management (ALM). In many of these
applications such as pension plans, university endowments, and hedge funds, there are decided
advantages to construct multi-period ALM models. The ex post success of momentum strategy shall
apply to these optimization models. But this conjecture needs to be evaluated with real world experiences.
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Appendix

Datastream Industry Classification

Level 2 (10 Indices)

Level 3 (18 Indices)

Level 4 (38 Indices)

Oil & Gas

Oil & Gas

Oil & Gas Producers; Oil Equipment, Services & Distribution

Basic Materials

Chemicals

Chemicals

Basic Resources

Forestry & Paper; Industrial Metals; Mining

Industrials

Construction & Materials

Construction & Materials

Industrial Goods & Services

Aerospace & Defense; General Industrials; Electronic &
Electrical Equipment; Industrial Engineering; Industrial
Teleportation; Support Services

Consumer Goods

Automobiles & Parts

Automobiles & Parts

Food & Beverage

Beverages; Food Producers

Personal & Household Goods

Household Goods; Leisure Goods; Personal Goods; Tobacco

Health Care Equipment & Services; Pharmaceuticals &

Health Care Health Care Biotechnology
Retail Food & Drug Retailers; General Retailers;
Consumer Services Media Media

Travel & Leisure

Travel & Leisure

Telecommunication  Telecommunication Fixed Line Telecommunication; Mobile Telecommunication
Utilities Utilities Electricity; Gas, Water & Multi-utilities

Banks Banks
Financials Insurance Nonlife Insurance; Life Insurance

Financial Services Real Estate; General Financials; Equity Investment Instruments
Technology Technology Software & Computer services; Technology Hardware &

Equipment

Note: DataStream industry classification is almost identical to Dow-Jones/FTSE ICB (Industry Classification Benchmark).
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